import os
import json
import numpy as np
from datetime import datetime, timedelta
import time
from PIL import Image
import cv2
from geopy.distance import geodesic
import math
# Optional advanced dependencies with fallback handling
try:
import pandas as pd
import geopandas as gpd
PANDAS_AVAILABLE = True
except ImportError:
PANDAS_AVAILABLE = False
print("Warning: pandas/geopandas not available. Install with: pip install pandas geopandas")
try:
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
PLOTLY_AVAILABLE = True
except ImportError:
PLOTLY_AVAILABLE = False
print("Warning: plotly not available. Install with: pip install plotly")
try:
import pydeck as pdk
PYDECK_AVAILABLE = True
except ImportError:
PYDECK_AVAILABLE = False
print("Warning: pydeck not available. Install with: pip install pydeck")
try:
import cv2
OPENCV_AVAILABLE = True
except ImportError:
OPENCV_AVAILABLE = False
print("Warning: opencv-python not available. Install with: pip install opencv-python")
class NavigationAnimationGenerator:
"""
Professional navigation animation generator with satellite view and 3D camera following
Creates Google Earth-style entry scene and detailed terrain navigation
"""
def __init__(self, output_folder):
self.output_folder = output_folder
self.frames_folder = os.path.join(output_folder, "nav_frames")
self.temp_folder = os.path.join(output_folder, "temp")
# Create necessary folders
os.makedirs(self.frames_folder, exist_ok=True)
os.makedirs(self.temp_folder, exist_ok=True)
# Navigation animation settings
self.fps = 30
self.entry_duration = 4 # seconds for Google Earth entry
self.camera_height_min = 1000 # meters
self.camera_height_max = 2000 # meters
self.follow_distance = 500 # meters behind navigation point
def check_dependencies(self):
"""Check if all required dependencies are available"""
missing = []
if not PANDAS_AVAILABLE:
missing.append("pandas geopandas")
if not PLOTLY_AVAILABLE:
missing.append("plotly")
if not PYDECK_AVAILABLE:
missing.append("pydeck")
if not OPENCV_AVAILABLE:
missing.append("opencv-python")
if missing:
raise ImportError(f"Missing required dependencies: {', '.join(missing)}. Please install them with: pip install {' '.join(missing)}")
return True
def load_gps_data(self, positions_file):
"""Load and preprocess GPS data for navigation"""
with open(positions_file, 'r') as f:
positions = json.load(f)
# Convert to DataFrame
df = pd.DataFrame(positions)
# Parse timestamps
df['timestamp'] = pd.to_datetime(df['fixTime'])
df = df.sort_values('timestamp')
# Calculate speed and bearing
df['speed_kmh'] = df['speed'] * 1.852 # Convert knots to km/h
df['elevation'] = df.get('altitude', 100)
# Calculate bearings and distances
bearings = []
distances = []
for i in range(len(df)):
if i == 0:
bearings.append(0)
distances.append(0)
else:
# Calculate bearing to next point
lat1, lon1 = df.iloc[i-1]['latitude'], df.iloc[i-1]['longitude']
lat2, lon2 = df.iloc[i]['latitude'], df.iloc[i]['longitude']
bearing = self.calculate_bearing(lat1, lon1, lat2, lon2)
distance = geodesic((lat1, lon1), (lat2, lon2)).meters
bearings.append(bearing)
distances.append(distance)
df['bearing'] = bearings
df['distance'] = distances
return df
def calculate_bearing(self, lat1, lon1, lat2, lon2):
"""Calculate bearing between two GPS points"""
lat1, lon1, lat2, lon2 = map(math.radians, [lat1, lon1, lat2, lon2])
dlon = lon2 - lon1
y = math.sin(dlon) * math.cos(lat2)
x = math.cos(lat1) * math.sin(lat2) - math.sin(lat1) * math.cos(lat2) * math.cos(dlon)
bearing = math.atan2(y, x)
bearing = math.degrees(bearing)
bearing = (bearing + 360) % 360
return bearing
def create_google_earth_entry_scene(self, df, frame_num):
"""Create Google Earth-style entry scene (zooming in from space)"""
if not PLOTLY_AVAILABLE:
raise ImportError("Plotly is required for entry scene")
# Get route bounds
center_lat = df['latitude'].mean()
center_lon = df['longitude'].mean()
# Entry animation: start from very high altitude and zoom in
total_entry_frames = self.entry_duration * self.fps
zoom_progress = frame_num / total_entry_frames
# Camera altitude decreases exponentially
start_altitude = 50000 # Start from 50km
end_altitude = 3000 # End at 3km
current_altitude = start_altitude * (1 - zoom_progress) + end_altitude * zoom_progress
# Create figure
fig = go.Figure()
# Add Earth-like surface with satellite imagery simulation
terrain_size = 0.5 - (0.4 * zoom_progress) # Zoom in effect
resolution = int(30 + (50 * zoom_progress)) # More detail as we zoom
lat_range = np.linspace(center_lat - terrain_size, center_lat + terrain_size, resolution)
lon_range = np.linspace(center_lon - terrain_size, center_lon + terrain_size, resolution)
lat_mesh, lon_mesh = np.meshgrid(lat_range, lon_range)
# Generate satellite-like terrain
terrain_heights = self.generate_satellite_terrain(lat_mesh, lon_mesh, center_lat, center_lon)
# Add terrain surface
fig.add_trace(
go.Surface(
x=lon_mesh,
y=lat_mesh,
z=terrain_heights,
colorscale=[
[0.0, 'rgb(0,100,0)'], # Deep green (forests)
[0.2, 'rgb(34,139,34)'], # Forest green
[0.4, 'rgb(255,215,0)'], # Gold (fields)
[0.6, 'rgb(139,69,19)'], # Brown (earth)
[0.8, 'rgb(105,105,105)'], # Gray (rock)
[1.0, 'rgb(255,255,255)'] # White (snow)
],
opacity=0.95,
showscale=False,
lighting=dict(
ambient=0.4,
diffuse=0.8,
specular=0.2
)
)
)
# Show partial route (fading in)
route_alpha = min(1.0, zoom_progress * 2)
if route_alpha > 0:
fig.add_trace(
go.Scatter3d(
x=df['longitude'],
y=df['latitude'],
z=df['elevation'] + 100,
mode='lines',
line=dict(
color='red',
width=8,
),
opacity=route_alpha,
name='Route'
)
)
# Camera position for entry effect
camera_distance = current_altitude / 10000
fig.update_layout(
title=dict(
text=f'Navigation Overview - Approaching Destination',
x=0.5,
font=dict(size=28, color='white', family="Arial Black")
),
scene=dict(
camera=dict(
eye=dict(x=0, y=-camera_distance, z=camera_distance),
center=dict(x=0, y=0, z=0),
up=dict(x=0, y=0, z=1)
),
xaxis=dict(visible=False),
yaxis=dict(visible=False),
zaxis=dict(visible=False),
aspectmode='cube',
bgcolor='rgb(0,0,50)', # Space-like background
),
paper_bgcolor='black',
showlegend=False,
width=1920,
height=1080,
margin=dict(l=0, r=0, t=60, b=0)
)
# Save frame
frame_path = os.path.join(self.frames_folder, f"NavEntry_{frame_num:04d}.png")
fig.write_image(frame_path, engine="kaleido")
return frame_path
def create_navigation_frame(self, df, current_index, frame_num):
"""Create detailed navigation frame with 3D following camera"""
if not PLOTLY_AVAILABLE:
raise ImportError("Plotly is required for navigation frames")
current_row = df.iloc[current_index]
current_lat = current_row['latitude']
current_lon = current_row['longitude']
current_alt = current_row['elevation']
current_speed = current_row['speed_kmh']
current_bearing = current_row['bearing']
# Get route progress
completed_route = df.iloc[:current_index + 1]
remaining_route = df.iloc[current_index:]
# Create detailed terrain around current position
terrain_radius = 0.01 # degrees around current position
resolution = 60
lat_range = np.linspace(current_lat - terrain_radius, current_lat + terrain_radius, resolution)
lon_range = np.linspace(current_lon - terrain_radius, current_lon + terrain_radius, resolution)
lat_mesh, lon_mesh = np.meshgrid(lat_range, lon_range)
# Generate high-detail satellite terrain
terrain_heights = self.generate_detailed_terrain(lat_mesh, lon_mesh, current_lat, current_lon)
# Create navigation display figure
fig = go.Figure()
# Add detailed terrain
fig.add_trace(
go.Surface(
x=lon_mesh,
y=lat_mesh,
z=terrain_heights,
colorscale=[
[0.0, 'rgb(34,139,34)'], # Forest green
[0.2, 'rgb(107,142,35)'], # Olive drab
[0.4, 'rgb(255,215,0)'], # Gold (fields)
[0.5, 'rgb(210,180,140)'], # Tan (roads/clearings)
[0.7, 'rgb(139,69,19)'], # Brown (earth)
[0.9, 'rgb(105,105,105)'], # Gray (rock)
[1.0, 'rgb(255,255,255)'] # White (peaks)
],
opacity=0.9,
showscale=False,
lighting=dict(
ambient=0.3,
diffuse=0.9,
specular=0.1
)
)
)
# Add completed route (green)
if len(completed_route) > 1:
fig.add_trace(
go.Scatter3d(
x=completed_route['longitude'],
y=completed_route['latitude'],
z=completed_route['elevation'] + 50,
mode='lines',
line=dict(color='lime', width=12),
name='Completed'
)
)
# Add remaining route (blue, semi-transparent)
if len(remaining_route) > 1:
fig.add_trace(
go.Scatter3d(
x=remaining_route['longitude'],
y=remaining_route['latitude'],
z=remaining_route['elevation'] + 50,
mode='lines',
line=dict(color='cyan', width=8),
opacity=0.6,
name='Remaining'
)
)
# Add navigation point (current vehicle position)
fig.add_trace(
go.Scatter3d(
x=[current_lon],
y=[current_lat],
z=[current_alt + 100],
mode='markers',
marker=dict(
color='red',
size=25,
symbol='diamond',
line=dict(color='white', width=4)
),
name='Vehicle'
)
)
# Add direction indicator
bearing_rad = math.radians(current_bearing)
arrow_length = 0.002
arrow_end_lat = current_lat + arrow_length * math.cos(bearing_rad)
arrow_end_lon = current_lon + arrow_length * math.sin(bearing_rad)
fig.add_trace(
go.Scatter3d(
x=[current_lon, arrow_end_lon],
y=[current_lat, arrow_end_lat],
z=[current_alt + 120, current_alt + 120],
mode='lines',
line=dict(color='yellow', width=15),
name='Direction'
)
)
# Calculate dynamic camera position for 3D following
# Camera follows behind and above at specified height
camera_height = self.camera_height_min + (self.camera_height_max - self.camera_height_min) * (current_speed / 100)
follow_distance_deg = 0.005 # degrees behind vehicle
# Position camera behind vehicle based on bearing
camera_bearing = (current_bearing + 180) % 360 # Opposite direction
camera_bearing_rad = math.radians(camera_bearing)
camera_lat = current_lat + follow_distance_deg * math.cos(camera_bearing_rad)
camera_lon = current_lon + follow_distance_deg * math.sin(camera_bearing_rad)
# Calculate relative camera position
camera_eye_x = (camera_lon - current_lon) * 100
camera_eye_y = (camera_lat - current_lat) * 100
camera_eye_z = camera_height / 1000
# Navigation info overlay
total_distance = sum(df['distance'])
completed_distance = sum(completed_route['distance'])
progress_percent = (completed_distance / total_distance) * 100 if total_distance > 0 else 0
fig.update_layout(
title=dict(
text=f'Navigation • Speed: {current_speed:.1f} km/h • Progress: {progress_percent:.1f}% • {current_row["timestamp"].strftime("%H:%M:%S")}',
x=0.5,
font=dict(size=20, color='white', family="Arial Black")
),
scene=dict(
camera=dict(
eye=dict(x=camera_eye_x, y=camera_eye_y, z=camera_eye_z),
center=dict(x=0, y=0, z=0),
up=dict(x=0, y=0, z=1)
),
xaxis=dict(visible=False),
yaxis=dict(visible=False),
zaxis=dict(visible=False),
aspectmode='manual',
aspectratio=dict(x=1, y=1, z=0.3),
bgcolor='rgb(135,206,235)' # Sky blue
),
paper_bgcolor='black',
showlegend=False,
width=1920,
height=1080,
margin=dict(l=0, r=0, t=50, b=0)
)
# Save frame
frame_path = os.path.join(self.frames_folder, f"Navigation_{frame_num:04d}.png")
fig.write_image(frame_path, engine="kaleido")
return frame_path
def generate_satellite_terrain(self, lat_mesh, lon_mesh, center_lat, center_lon):
"""Generate satellite-view realistic terrain for entry scene"""
# Convert to local coordinates
lat_m = (lat_mesh - center_lat) * 111000
lon_m = (lon_mesh - center_lon) * 111000 * np.cos(np.radians(center_lat))
# Base elevation with realistic variation
base_height = 200 + 50 * np.sin(lat_m / 5000) * np.cos(lon_m / 3000)
# Mountain ranges
mountains = 800 * np.exp(-((lat_m - 2000)**2 + (lon_m - 1000)**2) / (3000**2))
mountains += 600 * np.exp(-((lat_m + 1500)**2 + (lon_m + 2000)**2) / (2500**2))
# Hills and valleys
hills = 200 * np.sin(lat_m / 1000) * np.cos(lon_m / 1200)
valleys = -100 * np.exp(-((lat_m)**2 + (lon_m)**2) / (2000**2))
terrain = base_height + mountains + hills + valleys
return np.maximum(terrain, 50)
def generate_detailed_terrain(self, lat_mesh, lon_mesh, center_lat, center_lon):
"""Generate high-detail terrain for navigation view"""
# Convert to local coordinates
lat_m = (lat_mesh - center_lat) * 111000
lon_m = (lon_mesh - center_lon) * 111000 * np.cos(np.radians(center_lat))
# Base terrain
base = 150 + 30 * np.sin(lat_m / 500) * np.cos(lon_m / 400)
# Local features
hills = 100 * np.exp(-((lat_m - 300)**2 + (lon_m - 200)**2) / (200**2))
ridges = 80 * np.exp(-((lat_m + 200)**2 + (lon_m - 400)**2) / (300**2))
# Fine detail
detail = 20 * np.sin(lat_m / 50) * np.cos(lon_m / 60)
terrain = base + hills + ridges + detail
return np.maximum(terrain, 30)
for i in range(len(df)):
if i == 0:
distances.append(0)
bearings.append(0)
else:
prev_point = (df.iloc[i-1]['latitude'], df.iloc[i-1]['longitude'])
curr_point = (df.iloc[i]['latitude'], df.iloc[i]['longitude'])
# Calculate distance
dist = geodesic(prev_point, curr_point).meters
distances.append(dist)
# Calculate bearing
lat1, lon1 = math.radians(prev_point[0]), math.radians(prev_point[1])
lat2, lon2 = math.radians(curr_point[0]), math.radians(curr_point[1])
dlon = lon2 - lon1
bearing = math.atan2(
math.sin(dlon) * math.cos(lat2),
math.cos(lat1) * math.sin(lat2) - math.sin(lat1) * math.cos(lat2) * math.cos(dlon)
)
bearings.append(math.degrees(bearing))
df['distance'] = distances
df['bearing'] = bearings
return df
def create_pydeck_frame(self, df, current_index, frame_num):
"""Create a single frame using Pydeck"""
# Get current position
current_row = df.iloc[current_index]
# Get trail data (previous points)
start_idx = max(0, current_index - self.trail_length)
trail_data = df.iloc[start_idx:current_index + 1].copy()
# Create color gradient for trail (fade effect)
trail_colors = []
for i, _ in enumerate(trail_data.iterrows()):
alpha = (i + 1) / len(trail_data) * 255
trail_colors.append([255, 100, 100, int(alpha)])
trail_data['color'] = trail_colors
# Create the deck
view_state = pdk.ViewState(
longitude=current_row['longitude'],
latitude=current_row['latitude'],
zoom=16,
pitch=60,
bearing=current_row['bearing']
)
# Path layer (trail)
path_layer = pdk.Layer(
"PathLayer",
trail_data,
get_path=lambda x: [[x['longitude'], x['latitude'], x['elevation']]],
get_color=[255, 100, 100, 200],
width_min_pixels=3,
width_max_pixels=8,
)
# Scatterplot layer (current position)
current_point = pd.DataFrame([{
'longitude': current_row['longitude'],
'latitude': current_row['latitude'],
'elevation': current_row['elevation'] + 10,
'speed': current_row['speed_kmh']
}])
scatter_layer = pdk.Layer(
"ScatterplotLayer",
current_point,
get_position=['longitude', 'latitude', 'elevation'],
get_radius=15,
get_color=[255, 255, 0, 255],
pickable=True
)
# Create deck
deck = pdk.Deck(
layers=[path_layer, scatter_layer],
initial_view_state=view_state,
map_style='mapbox://styles/mapbox/satellite-v9'
)
# Save frame
frame_path = os.path.join(self.frames_folder, f"frame_{frame_num:06d}.png")
deck.to_html(frame_path.replace('.png', '.html'))
return frame_path
def create_plotly_frame(self, df, current_index, frame_num):
"""Create a single frame using Plotly for 3D visualization"""
# Get current position
current_row = df.iloc[current_index]
# Get trail data
start_idx = max(0, current_index - self.trail_length)
trail_data = df.iloc[start_idx:current_index + 1]
# Create 3D scatter plot
fig = go.Figure()
# Add trail
fig.add_trace(go.Scatter3d(
x=trail_data['longitude'],
y=trail_data['latitude'],
z=trail_data['elevation'],
mode='lines+markers',
line=dict(
color=trail_data.index,
colorscale='Plasma',
width=8
),
marker=dict(
size=3,
opacity=0.8
),
name='Trail'
))
# Add current position
fig.add_trace(go.Scatter3d(
x=[current_row['longitude']],
y=[current_row['latitude']],
z=[current_row['elevation'] + 50],
mode='markers',
marker=dict(
size=15,
color='red',
symbol='diamond'
),
name='Current Position'
))
# Add speed information as text
speed_text = f"Speed: {current_row['speed_kmh']:.1f} km/h
"
speed_text += f"Time: {current_row['timestamp'].strftime('%H:%M:%S')}
"
speed_text += f"Altitude: {current_row['elevation']:.0f} m"
# Update layout
fig.update_layout(
title=f"3D GPS Track Animation - Frame {frame_num}",
scene=dict(
xaxis_title='Longitude',
yaxis_title='Latitude',
zaxis_title='Elevation (m)',
camera=dict(
eye=dict(x=1.5, y=1.5, z=1.5)
),
aspectmode='cube'
),
annotations=[
dict(
text=speed_text,
x=0.02,
y=0.98,
xref='paper',
yref='paper',
showarrow=False,
bgcolor='rgba(255,255,255,0.8)',
bordercolor='black',
borderwidth=1
)
],
width=1920,
height=1080
)
# Save frame
frame_path = os.path.join(self.frames_folder, f"frame_{frame_num:06d}.png")
fig.write_image(frame_path, engine="kaleido")
return frame_path
def create_advanced_plotly_frame(self, df, current_index, frame_num):
"""Create Relive-style progressive animation frame"""
# Progressive track: show all points from start to current position
current_track = df.iloc[:current_index + 1]
current_row = df.iloc[current_index]
# Create subplot with multiple views
fig = make_subplots(
rows=2, cols=2,
subplot_titles=[
f'3D Track Progress - Frame {frame_num + 1}',
'Route Overview',
'Speed Over Time',
'Elevation Profile'
],
specs=[[{'type': 'scene'}, {'type': 'scatter'}],
[{'type': 'scatter'}, {'type': 'scatter'}]],
vertical_spacing=0.1,
horizontal_spacing=0.1
)
# 1. 3D Progressive Track View
if len(current_track) > 1:
# Show completed track in blue
fig.add_trace(
go.Scatter3d(
x=current_track['longitude'],
y=current_track['latitude'],
z=current_track['elevation'],
mode='lines+markers',
line=dict(color='blue', width=5),
marker=dict(
size=3,
color=current_track['speed_kmh'],
colorscale='Viridis',
showscale=True,
colorbar=dict(title="Speed (km/h)", x=0.45)
),
name='Completed Track',
showlegend=False
),
row=1, col=1
)
# Current vehicle position (moving marker)
fig.add_trace(
go.Scatter3d(
x=[current_row['longitude']],
y=[current_row['latitude']],
z=[current_row['elevation'] + 15],
mode='markers',
marker=dict(
size=15,
color='red',
symbol='diamond',
line=dict(color='white', width=2)
),
name=f'Vehicle - {current_row["timestamp"].strftime("%H:%M:%S")}',
showlegend=False
),
row=1, col=1
)
# 2. Top View - Route Overview with full track
# Show full route in light gray
fig.add_trace(
go.Scatter(
x=df['longitude'],
y=df['latitude'],
mode='lines',
line=dict(color='lightgray', width=2, dash='dot'),
name='Full Route',
showlegend=False
),
row=1, col=2
)
# Show completed track in color
if len(current_track) > 1:
fig.add_trace(
go.Scatter(
x=current_track['longitude'],
y=current_track['latitude'],
mode='lines+markers',
line=dict(color='blue', width=4),
marker=dict(
size=4,
color=current_track['speed_kmh'],
colorscale='Viridis'
),
name='Progress',
showlegend=False
),
row=1, col=2
)
# Current position on map
fig.add_trace(
go.Scatter(
x=[current_row['longitude']],
y=[current_row['latitude']],
mode='markers',
marker=dict(
size=12,
color='red',
symbol='circle',
line=dict(color='white', width=3)
),
name='Current Position',
showlegend=False
),
row=1, col=2
)
# 3. Speed Profile Over Time
if len(current_track) > 1:
time_points = list(range(len(current_track)))
fig.add_trace(
go.Scatter(
x=time_points,
y=current_track['speed_kmh'],
mode='lines+markers',
line=dict(color='green', width=3),
marker=dict(size=4),
fill='tonexty',
name='Speed',
showlegend=False
),
row=2, col=1
)
# Current speed marker
fig.add_trace(
go.Scatter(
x=[current_index],
y=[current_row['speed_kmh']],
mode='markers',
marker=dict(size=10, color='red'),
name='Current Speed',
showlegend=False
),
row=2, col=1
)
# 4. Elevation Profile Over Time
if len(current_track) > 1:
time_points = list(range(len(current_track)))
fig.add_trace(
go.Scatter(
x=time_points,
y=current_track['elevation'],
mode='lines+markers',
line=dict(color='brown', width=3),
marker=dict(size=4),
fill='tonexty',
name='Elevation',
showlegend=False
),
row=2, col=2
)
# Current elevation marker
fig.add_trace(
go.Scatter(
x=[current_index],
y=[current_row['elevation']],
mode='markers',
marker=dict(size=10, color='red'),
name='Current Elevation',
showlegend=False
),
row=2, col=2
)
# Enhanced layout with better styling
fig.update_layout(
title=dict(
text=f'GPS Track Animation - {current_row["timestamp"].strftime("%Y-%m-%d %H:%M:%S")}
' +
f'Progress: {current_index + 1}/{len(df)} points ({((current_index + 1)/len(df)*100):.1f}%)',
x=0.5,
font=dict(size=16)
),
showlegend=False,
width=1920,
height=1080,
paper_bgcolor='white',
plot_bgcolor='white'
)
# Update 3D scene
fig.update_scenes(
camera=dict(
eye=dict(x=1.5, y=1.5, z=1.2),
center=dict(x=0, y=0, z=0),
up=dict(x=0, y=0, z=1)
),
aspectmode='cube'
)
# Update axes labels
fig.update_xaxes(title_text="Longitude", row=1, col=2)
fig.update_yaxes(title_text="Latitude", row=1, col=2)
fig.update_xaxes(title_text="Time Points", row=2, col=1)
fig.update_yaxes(title_text="Speed (km/h)", row=2, col=1)
fig.update_xaxes(title_text="Time Points", row=2, col=2)
fig.update_yaxes(title_text="Elevation (m)", row=2, col=2)
# Save frame
frame_path = os.path.join(self.frames_folder, f"advanced_3d_frame_{frame_num:04d}.png")
try:
fig.write_image(frame_path, engine="kaleido", width=1920, height=1080)
return frame_path
except Exception as e:
print(f"Error creating frame {frame_num}: {e}")
return None
def generate_frames(self, positions_file, style='advanced', progress_callback=None):
"""Generate Relive-style progressive animation frames"""
print("Loading GPS data...")
df = self.load_gps_data(positions_file)
if len(df) < 2:
print("Not enough GPS points for animation")
return []
# Animation settings for smooth progression
min_frames = 60 # Minimum frames for very short trips
max_frames = 300 # Maximum frames to keep file size reasonable
# Calculate optimal frame count based on trip length
total_frames = min(max_frames, max(min_frames, len(df) * 2))
# Calculate step size for smooth progression
step_size = len(df) / total_frames
frame_paths = []
print(f"Generating {total_frames} frames for Relive-style animation...")
print(f"Processing {len(df)} GPS points with step size {step_size:.2f}")
for frame_num in range(total_frames):
# Calculate which GPS point to show up to
current_index = min(int(frame_num * step_size), len(df) - 1)
# Ensure we always progress forward
if current_index == 0:
current_index = 1
try:
if style == 'pydeck':
frame_path = self.create_pydeck_frame(df, current_index, frame_num)
elif style == 'plotly':
frame_path = self.create_plotly_frame(df, current_index, frame_num)
elif style == 'google_earth':
frame_path = self.create_google_earth_frame(df, current_index, frame_num)
else: # advanced (default)
frame_path = self.create_advanced_plotly_frame(df, current_index, frame_num)
if frame_path:
frame_paths.append(frame_path)
# Update progress
if progress_callback:
progress = ((frame_num + 1) / total_frames) * 100
progress_callback(
progress,
f"Creating animation frame {frame_num + 1}/{total_frames} (GPS point {current_index + 1}/{len(df)})"
)
# Progress feedback
if (frame_num + 1) % 20 == 0:
print(f"Generated {frame_num + 1}/{total_frames} frames ({progress:.1f}%)")
except Exception as e:
print(f"Error generating frame {frame_num}: {e}")
continue
print(f"Successfully generated {len(frame_paths)} animation frames")
return frame_paths
def create_video(self, frame_paths, output_video_path, progress_callback=None):
"""Create video from frames using OpenCV for better compatibility"""
print("Creating navigation animation video...")
if not frame_paths:
print("No frames to create video from")
return False
try:
import cv2
# Filter out None paths
valid_frames = [f for f in frame_paths if f and os.path.exists(f)]
if not valid_frames:
print("No valid frames found")
return False
print(f"Creating video from {len(valid_frames)} frames at {self.fps} FPS...")
# Update progress
if progress_callback:
progress_callback(30, "Reading frame dimensions...")
# Read first frame to get dimensions
first_frame = cv2.imread(valid_frames[0])
if first_frame is None:
print("Error reading first frame")
return False
height, width, layers = first_frame.shape
# Update progress
if progress_callback:
progress_callback(40, "Setting up video encoder...")
# Create video writer with OpenCV
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # You can also try 'XVID'
video_writer = cv2.VideoWriter(output_video_path, fourcc, self.fps, (width, height))
if not video_writer.isOpened():
print("Error: Could not open video writer")
return False
# Update progress
if progress_callback:
progress_callback(50, "Writing frames to video...")
# Write frames to video
total_frames = len(valid_frames)
for i, frame_path in enumerate(valid_frames):
frame = cv2.imread(frame_path)
if frame is not None:
video_writer.write(frame)
# Update progress periodically
if progress_callback and i % 10 == 0:
progress_percent = 50 + (i / total_frames) * 40 # 50-90%
progress_callback(progress_percent, f"Writing frame {i+1}/{total_frames}...")
# Clean up
video_writer.release()
cv2.destroyAllWindows()
if progress_callback:
progress_callback(100, f"Video successfully created: {os.path.basename(output_video_path)}")
# Verify the video was created
if os.path.exists(output_video_path) and os.path.getsize(output_video_path) > 0:
print(f"✅ Navigation animation video saved to: {output_video_path}")
file_size = os.path.getsize(output_video_path) / (1024 * 1024) # MB
print(f"📊 Video info: {len(valid_frames)} frames, {self.fps} FPS, {file_size:.1f} MB")
return True
else:
print("Error: Video file was not created properly")
return False
except Exception as e:
print(f"Error creating video: {e}")
if progress_callback:
progress_callback(-1, f"Error: {e}")
return False
def cleanup_frames(self):
"""Clean up temporary frame files"""
import shutil
if os.path.exists(self.frames_folder):
shutil.rmtree(self.frames_folder)
os.makedirs(self.frames_folder, exist_ok=True)
def create_google_earth_frame(self, df, current_index, frame_num):
"""
Create a Google Earth-style flythrough frame with realistic terrain and camera following
"""
if not PLOTLY_AVAILABLE:
raise ImportError("Plotly is required for Google Earth-style frames")
# Get current position and context
current_row = df.iloc[current_index]
current_lat = current_row['latitude']
current_lon = current_row['longitude']
current_alt = current_row.get('elevation', 100)
# Get track up to current position (progressive reveal)
track_so_far = df.iloc[:current_index + 1]
# Calculate terrain bounds around the track
lat_margin = 0.02 # degrees
lon_margin = 0.02 # degrees
min_lat = track_so_far['latitude'].min() - lat_margin
max_lat = track_so_far['latitude'].max() + lat_margin
min_lon = track_so_far['longitude'].min() - lon_margin
max_lon = track_so_far['longitude'].max() + lon_margin
# Generate terrain mesh
terrain_resolution = 40
lat_range = np.linspace(min_lat, max_lat, terrain_resolution)
lon_range = np.linspace(min_lon, max_lon, terrain_resolution)
lat_mesh, lon_mesh = np.meshgrid(lat_range, lon_range)
# Generate realistic terrain heights
terrain_heights = self.generate_terrain_heights(lat_mesh, lon_mesh, current_lat, current_lon)
# Create the figure
fig = go.Figure()
# Add terrain surface
fig.add_trace(
go.Surface(
x=lon_mesh,
y=lat_mesh,
z=terrain_heights,
colorscale=[
[0.0, 'rgb(139,69,19)'], # Brown (low elevation)
[0.2, 'rgb(160,82,45)'], # Saddle brown
[0.4, 'rgb(107,142,35)'], # Olive drab (medium)
[0.6, 'rgb(34,139,34)'], # Forest green
[0.8, 'rgb(105,105,105)'], # Dim gray (high)
[1.0, 'rgb(255,255,255)'] # White (peaks)
],
opacity=0.9,
showscale=False,
name='Terrain',
lighting=dict(
ambient=0.3,
diffuse=0.8,
specular=0.3,
roughness=0.3
)
)
)
# Add GPS track so far (elevated above terrain)
if len(track_so_far) > 1:
track_elevation = track_so_far['elevation'].values + 80 # 80m above terrain
fig.add_trace(
go.Scatter3d(
x=track_so_far['longitude'],
y=track_so_far['latitude'],
z=track_elevation,
mode='lines+markers',
line=dict(
color='red',
width=10
),
marker=dict(
size=4,
color='orange',
opacity=0.8
),
name='GPS Track'
)
)
# Add current vehicle position
vehicle_height = current_alt + 120 # Above terrain
fig.add_trace(
go.Scatter3d(
x=[current_lon],
y=[current_lat],
z=[vehicle_height],
mode='markers',
marker=dict(
color='red',
size=20,
symbol='diamond',
line=dict(color='yellow', width=3)
),
name='Vehicle'
)
)
# Calculate dynamic camera position for cinematic following
# Camera follows behind and above the vehicle
follow_distance = 0.005 # degrees behind
camera_height_offset = 1000 # meters above vehicle
if current_index > 5:
# Calculate movement direction from last few points
recent_track = df.iloc[max(0, current_index-5):current_index+1]
lat_direction = recent_track['latitude'].iloc[-1] - recent_track['latitude'].iloc[0]
lon_direction = recent_track['longitude'].iloc[-1] - recent_track['longitude'].iloc[0]
# Normalize direction
direction_length = np.sqrt(lat_direction**2 + lon_direction**2)
if direction_length > 0:
lat_direction /= direction_length
lon_direction /= direction_length
# Position camera behind the vehicle
camera_lat = current_lat - lat_direction * follow_distance
camera_lon = current_lon - lon_direction * follow_distance
else:
camera_lat = current_lat - follow_distance
camera_lon = current_lon - follow_distance
camera_z = (current_alt + camera_height_offset) / 1000 # Convert to relative scale
# Update layout for cinematic Google Earth-style view
fig.update_layout(
title=dict(
text=f'GPS Flythrough - {current_row["timestamp"].strftime("%H:%M:%S")} - Frame {frame_num}',
x=0.5,
font=dict(size=24, color='white', family="Arial Black")
),
scene=dict(
camera=dict(
eye=dict(
x=1.2, # Camera position relative to scene
y=-1.5,
z=0.8
),
center=dict(
x=0,
y=0,
z=0.2
),
up=dict(x=0, y=0, z=1)
),
xaxis=dict(
title='',
showgrid=False,
zeroline=False,
showline=False,
showticklabels=False,
showbackground=False
),
yaxis=dict(
title='',
showgrid=False,
zeroline=False,
showline=False,
showticklabels=False,
showbackground=False
),
zaxis=dict(
title='',
showgrid=False,
zeroline=False,
showline=False,
showticklabels=False,
showbackground=False
),
aspectmode='cube',
bgcolor='rgb(135,206,235)', # Sky blue background
camera_projection_type='perspective'
),
paper_bgcolor='rgb(0,0,0)',
plot_bgcolor='rgb(0,0,0)',
showlegend=False,
width=1920,
height=1080,
margin=dict(l=0, r=0, t=60, b=0),
font=dict(color='white')
)
# Save frame
frame_path = os.path.join(self.frames_folder, f"GoogleEarth_Frame_{frame_num:04d}.png")
try:
fig.write_image(frame_path, engine="kaleido", width=1920, height=1080)
return frame_path
except Exception as e:
print(f"Error saving frame {frame_num}: {e}")
return None
def generate_terrain_heights(self, lat_mesh, lon_mesh, center_lat, center_lon):
"""
Generate realistic terrain heights using mathematical functions to simulate mountains/hills
"""
# Convert lat/lon to local coordinates (approximate)
lat_m = (lat_mesh - center_lat) * 111000 # degrees to meters
lon_m = (lon_mesh - center_lon) * 111000 * np.cos(np.radians(center_lat))
# Base terrain height
base_height = 300
# Create mountain ridges using sine waves
ridge1 = 400 * np.exp(-((lat_m - 1000)**2 + (lon_m + 500)**2) / (800**2))
ridge2 = 500 * np.exp(-((lat_m + 800)**2 + (lon_m - 1200)**2) / (1000**2))
ridge3 = 350 * np.exp(-((lat_m)**2 + (lon_m)**2) / (1500**2))
# Add rolling hills
hills = 150 * np.sin(lat_m / 400) * np.cos(lon_m / 600)
hills += 100 * np.sin(lat_m / 800) * np.sin(lon_m / 300)
# Add valleys
valleys = -80 * np.exp(-((lat_m - 500)**2 + (lon_m + 800)**2) / (600**2))
# Combine all terrain features
terrain = base_height + ridge1 + ridge2 + ridge3 + hills + valleys
# Add some noise for realism
noise = 30 * np.sin(lat_m / 100) * np.cos(lon_m / 150)
terrain += noise
# Ensure minimum elevation
terrain = np.maximum(terrain, 50)
return terrain