Files
Server_Monitorizare/explanations and old code/IMPROVEMENT_ANALYSIS.md
Developer 376240fb06 Add configuration, utilities, and update server with enhanced monitoring features
- Add config.py for environment configuration management
- Add utils.py with utility functions
- Add .env.example for environment variable reference
- Add routes_example.py as route reference
- Add login.html template for authentication
- Update server.py with enhancements
- Update all dashboard and log templates
- Move documentation to 'explanations and old code' directory
- Update database schema
2025-12-18 09:11:11 +02:00

14 KiB

Server Monitorizare - Code Analysis & Improvement Proposals

Current Architecture Overview

The application is a Flask-based device monitoring system with:

  • SQLite database for logging
  • REST API endpoints for device communication
  • Web UI dashboard for visualization
  • Remote command execution capabilities
  • Bulk operations support with threading

🔴 Critical Issues & Improvements

1. Security Vulnerabilities

a) No Authentication/Authorization

Issue: All endpoints are publicly accessible without any authentication

@app.route('/logs', methods=['POST'])
def log_event():
    # No authentication check - anyone can send logs

Impact: Critical - Anyone can:

  • Submit fake logs
  • Execute commands on devices
  • Reset the database
  • Access sensitive device information

Proposal:

from flask import session
from functools import wraps

def require_auth(f):
    @wraps(f)
    def decorated(*args, **kwargs):
        if 'user_id' not in session:
            return jsonify({"error": "Authentication required"}), 401
        return f(*args, **kwargs)
    return decorated

@app.route('/logs', methods=['POST'])
@require_auth
def log_event():
    # Protected endpoint

b) SQL Injection Risk (Minor - Using Parameterized Queries)

Status: Good - Already using parameterized queries with ? placeholders Recommendation: Maintain this practice


c) No API Key for Device Communication

Issue: Devices communicate with server without authentication

url = f"http://{device_ip}:80/execute_command"  # No API key

Proposal: Add API key validation

API_KEY = os.environ.get('DEVICE_API_KEY', 'default-key')

headers = {
    'X-API-Key': API_KEY,
    'Content-Type': 'application/json'
}
response = requests.post(url, json=payload, headers=headers, timeout=30)

2. Code Structure & Maintainability

a) No Configuration Management

Issue: Hardcoded values scattered throughout code

DATABASE = 'data/database.db'  # Hardcoded
port=80  # Hardcoded
timeout=30  # Hardcoded

Proposal: Create a config module

# config.py
import os
from dotenv import load_dotenv

load_dotenv()

class Config:
    DATABASE = os.getenv('DATABASE_PATH', 'data/database.db')
    DEBUG = os.getenv('DEBUG', False)
    PORT = int(os.getenv('PORT', 80))
    REQUEST_TIMEOUT = int(os.getenv('REQUEST_TIMEOUT', 30))
    LOG_LEVEL = os.getenv('LOG_LEVEL', 'INFO')

b) Database Connection Not Optimized

Issue: Opening new connection for every request - no connection pooling

with sqlite3.connect(DATABASE) as conn:  # New connection each time
    cursor = conn.cursor()

Impact: Performance degradation with many concurrent requests

Proposal: Use SQLAlchemy with connection pooling

from flask_sqlalchemy import SQLAlchemy

app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///data/database.db'
db = SQLAlchemy(app)

class Log(db.Model):
    id = db.Column(db.Integer, primary_key=True)
    hostname = db.Column(db.String(255), nullable=False)
    device_ip = db.Column(db.String(15), nullable=False)
    # ... other fields

c) No Logging System

Issue: Using print() for debugging - not production-ready

print(f"Database error: {e}")
print("Log saved successfully")

Proposal: Implement proper logging

import logging
from logging.handlers import RotatingFileHandler

logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[
        RotatingFileHandler('logs/app.log', maxBytes=10485760, backupCount=10),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)

# Usage
logger.info("Log saved successfully")
logger.error(f"Database error: {e}")
logger.warning("Missing required fields")

3. Error Handling

a) Inconsistent Error Responses

Issue: Errors returned with inconsistent structures

return {"error": "Invalid or missing JSON payload"}, 400
return jsonify({"error": f"Database connection failed: {e}"}), 500

Proposal: Create a standardized error handler

class APIError(Exception):
    def __init__(self, message, status_code=400):
        self.message = message
        self.status_code = status_code

@app.errorhandler(APIError)
def handle_api_error(e):
    response = {
        'success': False,
        'error': e.message,
        'timestamp': datetime.now().isoformat()
    }
    return jsonify(response), e.status_code

# Usage
if not hostname:
    raise APIError("hostname is required", 400)

b) Bare Exception Handling

Issue: Catching all exceptions without logging details

except Exception as e:
    return {"error": "An unexpected error occurred"}, 500

Impact: Difficult to debug issues in production

Proposal: Specific exception handling with logging

except sqlite3.Error as e:
    logger.error(f"Database error: {e}", exc_info=True)
    raise APIError("Database operation failed", 500)
except requests.exceptions.Timeout:
    logger.warning(f"Request timeout for device {device_ip}")
    raise APIError("Device request timeout", 504)
except Exception as e:
    logger.exception("Unexpected error occurred")
    raise APIError("Internal server error", 500)

4. Input Validation

a) Minimal Validation

Issue: Only checking if fields exist, not their format

if not hostname or not device_ip or not nume_masa or not log_message:
    return {"error": "Missing required fields"}, 400
# No validation of format/length

Proposal: Implement comprehensive validation

from marshmallow import Schema, fields, ValidationError

class LogSchema(Schema):
    hostname = fields.Str(required=True, validate=Length(min=1, max=255))
    device_ip = fields.IP(required=True)
    nume_masa = fields.Str(required=True, validate=Length(min=1, max=255))
    log_message = fields.Str(required=True, validate=Length(min=1, max=1000))

schema = LogSchema()

@app.route('/logs', methods=['POST'])
def log_event():
    try:
        data = schema.load(request.json)
    except ValidationError as err:
        return jsonify({'errors': err.messages}), 400

5. Threading & Concurrency

a) Basic Threading Without Safety

Issue: Creating unbounded threads for bulk operations

for ip in device_ips:
    thread = threading.Thread(target=execute_on_device, args=(ip,))
    threads.append(thread)
    thread.start()

Impact: Can exhaust system resources with many requests

Proposal: Use ThreadPoolExecutor with bounded pool

from concurrent.futures import ThreadPoolExecutor, as_completed

def execute_command_bulk():
    try:
        data = request.json
        device_ips = data.get('device_ips', [])
        command = data.get('command')
        
        results = {}
        max_workers = min(10, len(device_ips))  # Max 10 threads
        
        with ThreadPoolExecutor(max_workers=max_workers) as executor:
            future_to_ip = {
                executor.submit(execute_command_on_device, ip, command): ip 
                for ip in device_ips
            }
            
            for future in as_completed(future_to_ip):
                ip = future_to_ip[future]
                try:
                    results[ip] = future.result()
                except Exception as e:
                    logger.error(f"Error executing command on {ip}: {e}")
                    results[ip] = {"success": False, "error": str(e)}
        
        return jsonify({"results": results}), 200

6. Data Persistence & Backup

a) No Database Backup

Issue: reset_database() endpoint can delete all data without backup

Proposal: Implement automatic backups

import shutil
from datetime import datetime

def backup_database():
    """Create a backup of the current database"""
    timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
    backup_file = f'backups/database_backup_{timestamp}.db'
    
    os.makedirs('backups', exist_ok=True)
    shutil.copy2(DATABASE, backup_file)
    logger.info(f"Database backup created: {backup_file}")
    
    # Keep only last 10 backups
    backups = sorted(glob.glob('backups/database_backup_*.db'))
    for backup in backups[:-10]:
        os.remove(backup)

7. Performance Issues

a) Inefficient Queries

Issue: Fetching all results without pagination

cursor.execute('''
    SELECT * FROM logs 
    LIMIT 60  # Still loads everything into memory
''')
logs = cursor.fetchall()

Proposal: Implement pagination

def get_logs_paginated(page=1, per_page=20):
    offset = (page - 1) * per_page
    cursor.execute('''
        SELECT * FROM logs 
        ORDER BY timestamp DESC 
        LIMIT ? OFFSET ?
    ''', (per_page, offset))
    return cursor.fetchall()

b) No Caching

Issue: Unique devices query runs on every request

@app.route('/unique_devices', methods=['GET'])
def unique_devices():
    # No caching - database query every time

Proposal: Add caching layer

from flask_caching import Cache

cache = Cache(app, config={'CACHE_TYPE': 'simple'})

@app.route('/unique_devices', methods=['GET'])
@cache.cached(timeout=300)  # Cache for 5 minutes
def unique_devices():
    # Query only executed once per 5 minutes

8. Code Organization

a) Monolithic Structure

Issue: All code in single file (462 lines) - hard to maintain

Proposal: Split into modular structure

server.py (main app)
├── config.py (configuration)
├── models.py (database models)
├── routes/
│   ├── __init__.py
│   ├── logs.py (logging endpoints)
│   ├── devices.py (device management)
│   └── commands.py (command execution)
├── services/
│   ├── __init__.py
│   ├── device_service.py
│   └── command_service.py
├── utils/
│   ├── __init__.py
│   ├── validators.py
│   └── decorators.py
└── tests/
    ├── __init__.py
    └── test_routes.py

9. Missing Features

a) Rate Limiting

from flask_limiter import Limiter
from flask_limiter.util import get_remote_address

limiter = Limiter(
    app=app,
    key_func=get_remote_address,
    default_limits=["200 per day", "50 per hour"]
)

@app.route('/logs', methods=['POST'])
@limiter.limit("10 per minute")
def log_event():
    # Prevent abuse

b) CORS Configuration

from flask_cors import CORS

CORS(app, resources={
    r"/api/*": {
        "origins": ["http://localhost:3000"],
        "methods": ["GET", "POST"],
        "allow_headers": ["Content-Type", "Authorization"]
    }
})

c) Health Check Endpoint

@app.route('/health', methods=['GET'])
def health():
    try:
        with sqlite3.connect(DATABASE) as conn:
            conn.execute('SELECT 1')
        return jsonify({"status": "healthy"}), 200
    except:
        return jsonify({"status": "unhealthy"}), 503

10. Testing

a) No Unit Tests

Proposal: Add pytest tests

# tests/test_logs.py
import pytest
from app import app, DATABASE

@pytest.fixture
def client():
    app.config['TESTING'] = True
    with app.test_client() as client:
        yield client

def test_log_event_success(client):
    response = client.post('/logs', json={
        'hostname': 'test-host',
        'device_ip': '192.168.1.1',
        'nume_masa': 'test',
        'log_message': 'test message'
    })
    assert response.status_code == 201

def test_log_event_missing_fields(client):
    response = client.post('/logs', json={
        'hostname': 'test-host'
    })
    assert response.status_code == 400

📋 Implementation Priority

Phase 1 (Critical - Week 1)

  • Add authentication/authorization
  • Implement proper logging
  • Add input validation with Marshmallow
  • Create config.py for configuration management

Phase 2 (High - Week 2)

  • Switch to SQLAlchemy with connection pooling
  • Add database backups
  • Implement pagination for queries
  • Add health check endpoint

Phase 3 (Medium - Week 3)

  • Refactor into modular structure
  • Add rate limiting
  • Implement caching
  • Add API documentation (Swagger/OpenAPI)

Phase 4 (Low - Week 4)

  • Add unit tests with pytest
  • Add CORS configuration
  • Performance optimization
  • Docker containerization

📊 Summary Table

Issue Severity Impact Effort
No Authentication 🔴 Critical Security breach Medium
No Logging 🔴 Critical Cannot debug production Low
Monolithic Structure 🟠 High Unmaintainable Medium
No Input Validation 🟠 High Data integrity issues Low
Basic Threading 🟠 High Resource exhaustion Medium
No Pagination 🟡 Medium Memory issues at scale Low
No Tests 🟡 Medium Regression risks High
No Rate Limiting 🟡 Medium Abuse potential Low

🚀 Quick Wins (Easy Improvements)

  1. Add logging (5 min) - Replace all print() statements
  2. Add health check (5 min) - Simple endpoint
  3. Add rate limiting (10 min) - Flask-Limiter integration
  4. Add error standardization (15 min) - Create error handler
  5. Create .env file (10 min) - Move hardcoded values

flask==3.0.0
flask-sqlalchemy==3.1.1
flask-cors==4.0.0
flask-limiter==3.5.0
flask-caching==2.1.0
marshmallow==3.20.1
python-dotenv==1.0.0
requests==2.31.0
pytest==7.4.3
gunicorn==21.2.0