- Add config.py for environment configuration management - Add utils.py with utility functions - Add .env.example for environment variable reference - Add routes_example.py as route reference - Add login.html template for authentication - Update server.py with enhancements - Update all dashboard and log templates - Move documentation to 'explanations and old code' directory - Update database schema
14 KiB
Server Monitorizare - Code Analysis & Improvement Proposals
Current Architecture Overview
The application is a Flask-based device monitoring system with:
- SQLite database for logging
- REST API endpoints for device communication
- Web UI dashboard for visualization
- Remote command execution capabilities
- Bulk operations support with threading
🔴 Critical Issues & Improvements
1. Security Vulnerabilities
a) No Authentication/Authorization
Issue: All endpoints are publicly accessible without any authentication
@app.route('/logs', methods=['POST'])
def log_event():
# No authentication check - anyone can send logs
Impact: Critical - Anyone can:
- Submit fake logs
- Execute commands on devices
- Reset the database
- Access sensitive device information
Proposal:
from flask import session
from functools import wraps
def require_auth(f):
@wraps(f)
def decorated(*args, **kwargs):
if 'user_id' not in session:
return jsonify({"error": "Authentication required"}), 401
return f(*args, **kwargs)
return decorated
@app.route('/logs', methods=['POST'])
@require_auth
def log_event():
# Protected endpoint
b) SQL Injection Risk (Minor - Using Parameterized Queries)
Status: ✅ Good - Already using parameterized queries with ? placeholders
Recommendation: Maintain this practice
c) No API Key for Device Communication
Issue: Devices communicate with server without authentication
url = f"http://{device_ip}:80/execute_command" # No API key
Proposal: Add API key validation
API_KEY = os.environ.get('DEVICE_API_KEY', 'default-key')
headers = {
'X-API-Key': API_KEY,
'Content-Type': 'application/json'
}
response = requests.post(url, json=payload, headers=headers, timeout=30)
2. Code Structure & Maintainability
a) No Configuration Management
Issue: Hardcoded values scattered throughout code
DATABASE = 'data/database.db' # Hardcoded
port=80 # Hardcoded
timeout=30 # Hardcoded
Proposal: Create a config module
# config.py
import os
from dotenv import load_dotenv
load_dotenv()
class Config:
DATABASE = os.getenv('DATABASE_PATH', 'data/database.db')
DEBUG = os.getenv('DEBUG', False)
PORT = int(os.getenv('PORT', 80))
REQUEST_TIMEOUT = int(os.getenv('REQUEST_TIMEOUT', 30))
LOG_LEVEL = os.getenv('LOG_LEVEL', 'INFO')
b) Database Connection Not Optimized
Issue: Opening new connection for every request - no connection pooling
with sqlite3.connect(DATABASE) as conn: # New connection each time
cursor = conn.cursor()
Impact: Performance degradation with many concurrent requests
Proposal: Use SQLAlchemy with connection pooling
from flask_sqlalchemy import SQLAlchemy
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///data/database.db'
db = SQLAlchemy(app)
class Log(db.Model):
id = db.Column(db.Integer, primary_key=True)
hostname = db.Column(db.String(255), nullable=False)
device_ip = db.Column(db.String(15), nullable=False)
# ... other fields
c) No Logging System
Issue: Using print() for debugging - not production-ready
print(f"Database error: {e}")
print("Log saved successfully")
Proposal: Implement proper logging
import logging
from logging.handlers import RotatingFileHandler
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
RotatingFileHandler('logs/app.log', maxBytes=10485760, backupCount=10),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Usage
logger.info("Log saved successfully")
logger.error(f"Database error: {e}")
logger.warning("Missing required fields")
3. Error Handling
a) Inconsistent Error Responses
Issue: Errors returned with inconsistent structures
return {"error": "Invalid or missing JSON payload"}, 400
return jsonify({"error": f"Database connection failed: {e}"}), 500
Proposal: Create a standardized error handler
class APIError(Exception):
def __init__(self, message, status_code=400):
self.message = message
self.status_code = status_code
@app.errorhandler(APIError)
def handle_api_error(e):
response = {
'success': False,
'error': e.message,
'timestamp': datetime.now().isoformat()
}
return jsonify(response), e.status_code
# Usage
if not hostname:
raise APIError("hostname is required", 400)
b) Bare Exception Handling
Issue: Catching all exceptions without logging details
except Exception as e:
return {"error": "An unexpected error occurred"}, 500
Impact: Difficult to debug issues in production
Proposal: Specific exception handling with logging
except sqlite3.Error as e:
logger.error(f"Database error: {e}", exc_info=True)
raise APIError("Database operation failed", 500)
except requests.exceptions.Timeout:
logger.warning(f"Request timeout for device {device_ip}")
raise APIError("Device request timeout", 504)
except Exception as e:
logger.exception("Unexpected error occurred")
raise APIError("Internal server error", 500)
4. Input Validation
a) Minimal Validation
Issue: Only checking if fields exist, not their format
if not hostname or not device_ip or not nume_masa or not log_message:
return {"error": "Missing required fields"}, 400
# No validation of format/length
Proposal: Implement comprehensive validation
from marshmallow import Schema, fields, ValidationError
class LogSchema(Schema):
hostname = fields.Str(required=True, validate=Length(min=1, max=255))
device_ip = fields.IP(required=True)
nume_masa = fields.Str(required=True, validate=Length(min=1, max=255))
log_message = fields.Str(required=True, validate=Length(min=1, max=1000))
schema = LogSchema()
@app.route('/logs', methods=['POST'])
def log_event():
try:
data = schema.load(request.json)
except ValidationError as err:
return jsonify({'errors': err.messages}), 400
5. Threading & Concurrency
a) Basic Threading Without Safety
Issue: Creating unbounded threads for bulk operations
for ip in device_ips:
thread = threading.Thread(target=execute_on_device, args=(ip,))
threads.append(thread)
thread.start()
Impact: Can exhaust system resources with many requests
Proposal: Use ThreadPoolExecutor with bounded pool
from concurrent.futures import ThreadPoolExecutor, as_completed
def execute_command_bulk():
try:
data = request.json
device_ips = data.get('device_ips', [])
command = data.get('command')
results = {}
max_workers = min(10, len(device_ips)) # Max 10 threads
with ThreadPoolExecutor(max_workers=max_workers) as executor:
future_to_ip = {
executor.submit(execute_command_on_device, ip, command): ip
for ip in device_ips
}
for future in as_completed(future_to_ip):
ip = future_to_ip[future]
try:
results[ip] = future.result()
except Exception as e:
logger.error(f"Error executing command on {ip}: {e}")
results[ip] = {"success": False, "error": str(e)}
return jsonify({"results": results}), 200
6. Data Persistence & Backup
a) No Database Backup
Issue: reset_database() endpoint can delete all data without backup
Proposal: Implement automatic backups
import shutil
from datetime import datetime
def backup_database():
"""Create a backup of the current database"""
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
backup_file = f'backups/database_backup_{timestamp}.db'
os.makedirs('backups', exist_ok=True)
shutil.copy2(DATABASE, backup_file)
logger.info(f"Database backup created: {backup_file}")
# Keep only last 10 backups
backups = sorted(glob.glob('backups/database_backup_*.db'))
for backup in backups[:-10]:
os.remove(backup)
7. Performance Issues
a) Inefficient Queries
Issue: Fetching all results without pagination
cursor.execute('''
SELECT * FROM logs
LIMIT 60 # Still loads everything into memory
''')
logs = cursor.fetchall()
Proposal: Implement pagination
def get_logs_paginated(page=1, per_page=20):
offset = (page - 1) * per_page
cursor.execute('''
SELECT * FROM logs
ORDER BY timestamp DESC
LIMIT ? OFFSET ?
''', (per_page, offset))
return cursor.fetchall()
b) No Caching
Issue: Unique devices query runs on every request
@app.route('/unique_devices', methods=['GET'])
def unique_devices():
# No caching - database query every time
Proposal: Add caching layer
from flask_caching import Cache
cache = Cache(app, config={'CACHE_TYPE': 'simple'})
@app.route('/unique_devices', methods=['GET'])
@cache.cached(timeout=300) # Cache for 5 minutes
def unique_devices():
# Query only executed once per 5 minutes
8. Code Organization
a) Monolithic Structure
Issue: All code in single file (462 lines) - hard to maintain
Proposal: Split into modular structure
server.py (main app)
├── config.py (configuration)
├── models.py (database models)
├── routes/
│ ├── __init__.py
│ ├── logs.py (logging endpoints)
│ ├── devices.py (device management)
│ └── commands.py (command execution)
├── services/
│ ├── __init__.py
│ ├── device_service.py
│ └── command_service.py
├── utils/
│ ├── __init__.py
│ ├── validators.py
│ └── decorators.py
└── tests/
├── __init__.py
└── test_routes.py
9. Missing Features
a) Rate Limiting
from flask_limiter import Limiter
from flask_limiter.util import get_remote_address
limiter = Limiter(
app=app,
key_func=get_remote_address,
default_limits=["200 per day", "50 per hour"]
)
@app.route('/logs', methods=['POST'])
@limiter.limit("10 per minute")
def log_event():
# Prevent abuse
b) CORS Configuration
from flask_cors import CORS
CORS(app, resources={
r"/api/*": {
"origins": ["http://localhost:3000"],
"methods": ["GET", "POST"],
"allow_headers": ["Content-Type", "Authorization"]
}
})
c) Health Check Endpoint
@app.route('/health', methods=['GET'])
def health():
try:
with sqlite3.connect(DATABASE) as conn:
conn.execute('SELECT 1')
return jsonify({"status": "healthy"}), 200
except:
return jsonify({"status": "unhealthy"}), 503
10. Testing
a) No Unit Tests
Proposal: Add pytest tests
# tests/test_logs.py
import pytest
from app import app, DATABASE
@pytest.fixture
def client():
app.config['TESTING'] = True
with app.test_client() as client:
yield client
def test_log_event_success(client):
response = client.post('/logs', json={
'hostname': 'test-host',
'device_ip': '192.168.1.1',
'nume_masa': 'test',
'log_message': 'test message'
})
assert response.status_code == 201
def test_log_event_missing_fields(client):
response = client.post('/logs', json={
'hostname': 'test-host'
})
assert response.status_code == 400
📋 Implementation Priority
Phase 1 (Critical - Week 1)
- Add authentication/authorization
- Implement proper logging
- Add input validation with Marshmallow
- Create config.py for configuration management
Phase 2 (High - Week 2)
- Switch to SQLAlchemy with connection pooling
- Add database backups
- Implement pagination for queries
- Add health check endpoint
Phase 3 (Medium - Week 3)
- Refactor into modular structure
- Add rate limiting
- Implement caching
- Add API documentation (Swagger/OpenAPI)
Phase 4 (Low - Week 4)
- Add unit tests with pytest
- Add CORS configuration
- Performance optimization
- Docker containerization
📊 Summary Table
| Issue | Severity | Impact | Effort |
|---|---|---|---|
| No Authentication | 🔴 Critical | Security breach | Medium |
| No Logging | 🔴 Critical | Cannot debug production | Low |
| Monolithic Structure | 🟠 High | Unmaintainable | Medium |
| No Input Validation | 🟠 High | Data integrity issues | Low |
| Basic Threading | 🟠 High | Resource exhaustion | Medium |
| No Pagination | 🟡 Medium | Memory issues at scale | Low |
| No Tests | 🟡 Medium | Regression risks | High |
| No Rate Limiting | 🟡 Medium | Abuse potential | Low |
🚀 Quick Wins (Easy Improvements)
- Add logging (5 min) - Replace all
print()statements - Add health check (5 min) - Simple endpoint
- Add rate limiting (10 min) - Flask-Limiter integration
- Add error standardization (15 min) - Create error handler
- Create .env file (10 min) - Move hardcoded values
📚 Recommended Dependencies
flask==3.0.0
flask-sqlalchemy==3.1.1
flask-cors==4.0.0
flask-limiter==3.5.0
flask-caching==2.1.0
marshmallow==3.20.1
python-dotenv==1.0.0
requests==2.31.0
pytest==7.4.3
gunicorn==21.2.0